(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(x)) → f(x)
f(s(x)) → f(x)
g(s(0)) → g(f(s(0)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(z0)
f(s(z0)) → f(z0)
g(s(0)) → g(f(s(0)))
Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
S tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c2
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(f(z0)) → c(F(z0))
We considered the (Usable) Rules:
f(s(z0)) → f(z0)
f(f(z0)) → f(z0)
And the Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(F(x1)) = [4]x1
POL(G(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(f(x1)) = [4] + [4]x1
POL(s(x1)) = x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(z0)
f(s(z0)) → f(z0)
g(s(0)) → g(f(s(0)))
Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
S tuples:
F(s(z0)) → c1(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
K tuples:
F(f(z0)) → c(F(z0))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c2
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(s(0)) → c2(G(f(s(0))), F(s(0)))
We considered the (Usable) Rules:
f(s(z0)) → f(z0)
f(f(z0)) → f(z0)
And the Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(F(x1)) = [3]
POL(G(x1)) = [2]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(f(x1)) = 0
POL(s(x1)) = x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(z0)
f(s(z0)) → f(z0)
g(s(0)) → g(f(s(0)))
Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
S tuples:
F(s(z0)) → c1(F(z0))
K tuples:
F(f(z0)) → c(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c2
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
G(
s(
0)) →
c2(
G(
f(
s(
0))),
F(
s(
0))) by
G(s(0)) → c2(G(f(0)), F(s(0)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(z0)
f(s(z0)) → f(z0)
g(s(0)) → g(f(s(0)))
Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c2(G(f(0)), F(s(0)))
S tuples:
F(s(z0)) → c1(F(z0))
K tuples:
F(f(z0)) → c(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c2
(9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(z0)
f(s(z0)) → f(z0)
g(s(0)) → g(f(s(0)))
Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c3(G(f(0)))
G(s(0)) → c3(F(s(0)))
S tuples:
F(s(z0)) → c1(F(z0))
K tuples:
F(f(z0)) → c(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c3
(11) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(z0)
f(s(z0)) → f(z0)
g(s(0)) → g(f(s(0)))
Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c3(F(s(0)))
G(s(0)) → c3
S tuples:
F(s(z0)) → c1(F(z0))
K tuples:
F(f(z0)) → c(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c3, c3
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(z0)) → c1(F(z0))
We considered the (Usable) Rules:none
And the Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c3(F(s(0)))
G(s(0)) → c3
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [5]
POL(F(x1)) = [5] + x1
POL(G(x1)) = [4] + [5]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3) = 0
POL(c3(x1)) = x1
POL(f(x1)) = [4]x1
POL(s(x1)) = [1] + x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(z0)
f(s(z0)) → f(z0)
g(s(0)) → g(f(s(0)))
Tuples:
F(f(z0)) → c(F(z0))
F(s(z0)) → c1(F(z0))
G(s(0)) → c3(F(s(0)))
G(s(0)) → c3
S tuples:none
K tuples:
F(f(z0)) → c(F(z0))
G(s(0)) → c2(G(f(s(0))), F(s(0)))
F(s(z0)) → c1(F(z0))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c3, c3
(15) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(16) BOUNDS(O(1), O(1))